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Motivation & Aim

Introduction

* The revolution of Online Social Networks

* Friend recommendations ensure the
growth of their network

* The impact of personality towards friend
selection

People You May Know
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20 mutual friends
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Motivation & Aim

Research Question

“Can link prediction precision improve when the users’ followee personality
preferences are taken into consideration?”

Objective 1: Employ the relationship between language and personality

Objective 2: Determine whether followee personality preferences relate to the
created links



Motivation & Aim

Personality Recognition from Text

* The Big Five personality model

* Every Big Five dimension is encoded in
language

* Questionnaires are time-consuming and
impractical
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likes the sound of thunder

is so sleepy it's not even funny

was about to finish

a painting

Agreeableness



Motivation & Aim

Personality-Aware Link Prediction

* The Link Prediction problem Q

e Users tend to have their own followee 7

personality preferences

number of link predictors
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* Incorporate such preferences towards a @ @
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Personality Recognition from Text

Closed vs. Open-vocabulary approaches

Closed-vocabulary

Using lexicons to derive intermediary

features from text
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Personality Datasets

Lexicons

Feature Extraction

Open-vocabulary

Derives data-driven features (not limited
to pre-defined word lists)
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Personality Recognition from Text

Methodology

Closed-vocabulary

» A feature extraction component was
built from various lexicons

* Regression models were trained using
personality-annotated datasets

* Optimisation techniques

Open-vocabulary

* Adopted the Differential Language
Analysis model

* Training and testing were conducted
using the same datasets



Personality-Aware Link Prediction

Data Collection

* ‘Twitter-ego’ dataset (containing ~2\V
edges and ~80K users)

e Utilisied the Twitter API to collect their
tweets

* Using the best personality recogniser, the

users’ personalities were recognised

User Count

-10?

~+— 47
=
=
o
QO
g 2°
w2
—

0

10° 10" 102 10°

Outgoing Degree




Personality-Aware Link Prediction
Methodology

User’s Followee Personality Preferences
ry silhouette scoring

e k-Means algorithm to cluster every user’s

followees’ personalities .
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» Topological and path-based predictors

were aggregated with PALP scores

Openness in Experience



Results & Findings

Correlation Analysis

Positive correlation Negative correlation Non-significant/small correlation
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Results & Findings

Personality Recognition from Text

* The best model was found to be a SVM model Competitive results to the DLA
. ° —
with a Pearson VII function kernel open-vocabulary alternative

Optimisation results

Hyper-parameter tuning Cross-media learning PCA feature construction




Results & Findings

Personality-Aware Link Prediction

Statistical testing determined that

the proposed metric improves over personality similarity
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Results & Findings

Personality-Aware Link Prediction

* Employed a variety of dataset splits
(10% - 50% test data)

* Improved both Average Precision
and Area Under the Curve

* The Adamic-Adar metric
experienced an increase of ~10%
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Conclusion

...anhd Future work

Link prediction precision has improved when followee personality
preferences were incorporated

* Employing additional personality-annotated
samples

e Substantiate findings on a wide-variety of
social networks (Facebook, LinkedIn, etc.)




Thank you for listening!
Any questions?

https://github.com/wendrul8/big5-app
https://github.com/wendrul8/palp-boost



https://github.com/wendru18/big5-app
https://github.com/wendru18/palp-boost
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Supplementary Material

MAE

Model O C E A \

LR 131 137 157 .139 168
GP 121 124 141 124 150
Mb5Rules 120 123 144 125 147
RF 112 113 135 113 135
SVM-POL 111 112 146 114 138
SVM-RBF 111 112 131 113 134
SVM-PUK | .105**  .109* 129 .109* .130
DLA [14] .109 110 J21%* 114 .140




Supplementary Material

Test Data (%)

Model 10 20 30 40 50
JC 98.87 98.54 98.01 97.13 95.52
oJC 99.18 99.04 98.75 98.23 97.38
g:? AA 93.45 91.91 &89.61 86.24 80.98
: e AA 96.49 95.66 94.42 92.59 &89.59
<C PA 86.00 86.47 86.41 86.35 86.28
oePA 7.17 87.12 87.02 87.02 86.98
\PAVS 94.28 94.07 93.64 93.32 92.77
oN2V | 94.34 94.14 93.81 93.59 93.04
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